
Coarse-to-Fine Human Mesh Recovery with Transformers

Vatsal Agarwal1∗ Mara Levy1 Max Ehrlich1 Youbao Tang2 Ning Zhang2

Abhinav Shrivastava1

1University of Maryland 2PAII Inc.

Abstract

The introduction of Transformer networks in computer
vision has resulted in rapid progress of deep models in a
variety of vision tasks. Recently, there has been great suc-
cess in utilizing such networks for the human mesh recovery
task. While these works demonstrate remarkable perfor-
mance, they suffer from high computational cost and slow
speed due to the quadratic nature of the self-attention mech-
anism. In this work, we propose a coarse-to-fine model-
ing approach to improve the pipeline efficiency. We build
upon previous approaches and adopt an encoder-decoder
architecture to mine relationships between image, joint and
vertex features. While previous works apply attention on
the full set of vertex features, our key insight is that ear-
lier model layers do not require such dense vertex repre-
sentations and instead can rely on a sparser set of features.
We evaluate our approach on the Human3.6M and 3DPW
datasets and find that with our coarse-to-fine approach, we
are able to achieve improved or competitive performance
with up to 2x decrease in parameters as well as a 10x re-
duction in FLOPS and a 5x reduction in activation count.

1. Introduction

Estimating the 3D mesh of a human from a single image
has become an increasingly popular task in computer vi-
sion. The ability to extract high-quality human models has
tremendous applications for understanding human interac-
tions as well as improving immersive technology such as
augmented and virtual reality. To generate a human mesh,
3D coordinates are regressed for each vertex of the mesh
representation. This process is time-consuming, however,
as many practical settings require fast 3D mesh reconstruc-
tion to be done in real-time. Additionally, these settings
often rely on using information from only a single view.
Recently, deep learning methods have made considerable
progress in improving this task. However, several chal-

*Work done during internship at PAII.

Coarse-to-Fine
Mesh Transformer

Figure 1. We propose a coarse-to-fine approach with Transformers
to generate a robust mesh representation starting from a small set
of initial vertex features and gradually increasing the mesh resolu-
tion.

lenges remain due to the complexity of different human
body shapes and poses. These are further exacerbated in
the monocular setting because of severe occlusions and am-
biguities in scale and depth.

There have been many strategies proposed to accurately
and efficiently recover human shape and pose from an im-
age [2, 3, 13, 16, 18, 19, 37]. These approaches can be
broadly separated into two categories: model-based and
model-free. Model-based methods rely on a parametric
model of the human body such as SMPL [21] and SMPL-
X [28] to generate the full mesh. Specifically, they train a
neural network pipeline to estimate body and shape param-
eters that are then input to the parametric model to generate
the final mesh. The primary benefit of such an approach is
that the parametric model encodes a strong prior for plausi-
ble human shapes and positions. This comes at the cost of
generalizability, however, as reconstructions in the wild are
constrained by pre-defined human models. Furthermore,
these model parameters are difficult for neural networks to
regress. For instance, SMPL represents pose as a set of 3D
rotations, which are difficult for neural networks to repre-
sent [16, 41].

In contrast, model-free methods aim to directly regress

Multi-Layer Coarse-to-Fine Transformer Encoder-Decoder

3D
Regressor

Mesh
Upsampling

MLP

Vertex Tokens

Joint TokensCam TokenFlattened Image Tokens

3D Joint Representation 3D Mesh Representation

CNN CoarseMETRO Layer 1
(I=49, J=14, V=48, B=1)

512 → 128

CoarseMETRO Layer 2
(I=49, J=14, V=192, B=1)

128 → 64

CoarseMETRO Layer 3
(I=49, J=14, V=384, B=1)

Coarse Mesh Features
(431 x 64)

Vertex MLP
384 → 431

Input Features (Dim=512)

Figure 2. Overview of the proposed framework. Given an input image, we extract 7 × 7 grid features from a convolutional neural
network (CNN) backbone. Given an initial set of J joint tokens, we apply MLP-based upsampling to obtain a set of coarse vertex features.
We then feed the image and camera tokens along with the 3D joint and vertex tokens to our encoder-decoder network to obtain our mesh
representation.

the 3D vertex coordinates. Works that use model-free meth-
ods have made significant improvements in performance.
Recently works rely on the Transformer architecture to
model non-local interactions between mesh vertices and
body joints. Such approaches have two primary benefits.
First, since each vertex has a corresponding feature, the
model is better able to capture more precise articulations.
Second, these models can easily be extended to different
settings such as hand or full-body mesh reconstruction as
they are not dependent on a parametric model. Despite ob-
taining impressive performance, these approaches incur a
large computational cost concerning parameters and mem-
ory. Due to the one-to-one correspondence between mesh
vertices and mesh features, it is not scalable to operate on
the fine-grained mesh, which consists of 6890 vertices. To
address this issue, most works apply self-attention on a
coarse mesh with 431 vertices. However, this is still prob-
lematic for settings that require near real-time mesh recov-
ery, as applying full self-attention over 400 vertices multi-
ple times is cost-prohibitive.

In this work, we propose a simple but effective solu-
tion to address this issue by introducing a coarse-to-fine
pipeline as shown in Fig. 1 that can be integrated easily
to any existing Transformer-based approach, denoted as
CoarseMETRO. Our approach is motivated by the observa-
tion that there is still considerable redundancy in the exist-
ing coarse mesh with 431 vertices. As such, we learn a set
of coarse vertex tokens at different granularities to capture
global and local mesh information. We utilize the extensive
modeling capacity of the Transformer to learn these tokens

without explicit guidance. With such a design, our network
can allocate vertex tokens adaptively to focus on important
body regions for a particular image. This is crucial in cases
where the complexity of the pose is limited to one region
such as the hands or legs and thus requires more attention.

Concretely, rather than using a fixed resolution for the
vertex tokens, we instead initialize them as a function of
the joint tokens and gradually upsample them across each
stage of the network. We showcase the benefits of our ap-
proach by adopting the FastMETRO protocol and utilizing
a Transformer-based encoder-decoder architecture. Specif-
ically, the encoder operates on a set of image tokens ob-
tained from a pre-trained feature extractor and a learnable
camera token that is used to regress scale and translation
parameters. The decoder input is a sequence of learnable
joint and vertex tokens and applies self-attention to model
non-local interactions between the joint and vertex features.
Furthermore, it applies cross-attention to encourage better
correspondences between the vertex and joint tokens and
the image features.

We make a few key changes to the architecture to inte-
grate our coarse-to-fine pipeline. First, we only construct
one set of learnable tokens to represent the joint features.
We then generate the initial vertex tokens by applying a set
of linear layers on the aforementioned joint tokens. In doing
so, we essentially initialize the vertex tokens as a function
of the joint tokens and ensure both are the same resolution.
The constructed tokens are then fed to the decoder and pro-
gressively upsampled by a scalar factor at each stage via a
simple linear layer. To enforce consistency between ver-

Table 1. Comparison with transformers for monocular 3D human mesh recovery on Human3.6M [11]. Inference-time evaluations were
done using a single V100 GPU with a batch size of 1. GFLOPs and Activation Counts were calculated using [30]. Best in bold second
best underlined.

Transformer Overall
Model #Params Time (ms) GFLOPs Activation Counts #Params PA-MPJPE ↓
FastMETRO–S–R50 [2] 9.2M 9.6 2.2G 7.6M 32.7M 39.4
FastMETRO–M–R50 [2] 17.1M 15.0 4.4G 15.3M 40.6M 38.6
FastMETRO–L–R50 [2] 24.9M 20.8 6.6G 22.9M 48.4M 37.3
TORE–FastMETRO-L–R50 [6] 23.5M – 0.6G – 50.2M 40.4
FastMETRO–L–H64 [2] 24.9M 20.8 6.6G 22.9M 153.0M 33.7
CoarseMETRO–S–R50 (Ours) 11.6M 9.4 0.6G 4.5M 35.1M 38.7
CoarseMETRO–S–H64 (Ours) 11.6M 9.4 0.6G 4.5M 139.7M 35.3

tex tokens at each granularity, we employ a single cross-
attention layer between the upsampled and initial vertex to-
kens. Notably, each set of coarse vertex tokens are learned
without requiring any pre-defined mesh information. The
main contributions of this work are as follows:

• We propose constructing vertex tokens dynamically from
a coarse resolution to finer resolutions via simple linear
layers. This drastically reduces the memory cost of the
Transformer block across the network.

• Our cross-granularity vertex cross-attention aids the
model in encouraging consistency between vertex tokens
of different resolutions thereby enabling accurate feature
upsampling.

2. Related works

2.1. Human Mesh Recovery

Human Mesh Recovery (HMR) aims to recover 3D human
shape and pose and has been an area of longstanding interest
in the vision community. Given the challenge of extracting
both a coherent and plausible human mesh from a single
image, there have been a diverse set of approaches proposed
for this task.

Many prior works propose using a neural network to
estimate parameters for a parametric model that has been
trained on a large number of human body models such as
SMPL [21], SMPL-X [28], and MANO [31]. In order to
further enhance performance, these works often generate
intermediate representations that can capture crucial pose
and shape information such as keypoints [38], part seg-
mentations [13], IUV maps [37], and 3D keypoints [3].
These approaches can exploit the strong prior encoded in
the parametric model to improve robustness to more com-
plex scenes and difficult viewpoints. However, training
these networks is difficult as the pose parameters they aim
to predict are 3D rotations and are challenging to regress.

Recently, there has been a growing body of work that
advances non-parametric modeling of human mesh and has

demonstrated impressive results. GraphCMR [16] was one
of the first papers to propose directly regressing the 3D
coordinates of the human body mesh via graph convolu-
tional neural networks (GCNNs). More specifically, they
first used a pre-trained image-based network to extract im-
age features and then concatenated them with 3D coordi-
nates of a template SMPL mesh. These features were then
fed to a GCNN to mine local vertex feature interactions and
progressively deform the mesh to obtain an accurate human
body pose and shape. Pose2Mesh [3] built upon this fur-
ther by using a 2D skeleton as input and a coarse-to-fine
approach that progressively upsamples the skeleton to gen-
erate the final mesh. It does the upsampling via a sequence
of GCNNs. METRO [19] proposes using a Transformer en-
coder to model non-local interactions and uses a similar ap-
proach to [16]. MeshGraphormer [18] builds upon METRO
by introducing a GCNN layer within their attention block
to explicitly mine local interactions. FastMETRO [2] pro-
poses a solution where the image features and 3D joint and
vertex features are processed independently via an encoder-
decoder design and learns a correspondence between the
two sets of features through a cross-attention mechanism.

Besides, there have been several works that have ex-
plored techniques to improve model efficiency and per-
formance simultaneously. TORE [6] improves upon Fast-
METRO by constraining the cross-attention to only focus
on image-joint interactions and utilizes a token-pruning
technique for reducing the number of attended image to-
kens. In a similar direction, DeFormer [36] eliminates the
encoder entirely and instead proposes a decoder-only archi-
tecture that takes advantage of block-sparse attention and
multi-scale features to further reduce memory costs. POT-
TER [39] explores an orthogonal direction for achieving
low computational cost via a new efficient backbone archi-
tecture. Most recently, [23] investigates a similar direction
to ours and proposes learning a set of virtual markers that
can serve as an intermediate representation for generating
accurate meshes.

Our work is inspired by [3] and we adopt the architecture
of [2] to showcase the potential of our approach. The pro-
posed pipeline differs from the aforementioned works in a
few crucial ways. First, unlike TORE, our approach enables
the modeling of all vertex tokens across the entire network
rather than limiting them until the last stage. Such a re-
striction prevents the model from properly learning shape
information which is critical in constructing a robust mesh.
With respect to DeFormer, we note that our pipeline im-
proves performance without the need for multi-scale fea-
tures which are costly due to increased spatial resolution.
Additionally, our efficiency comes from using a compact
set of vertex tokens, while theirs uses hardware-specific
techniques that may not be able to be adopted across all
hardware. Lastly, while [23] has a similar motivation to
our work, they rely on learning these markers via a two-
stage approach thereby increasing the complexity of train-
ing. Additionally, these markers are only a single resolution
and therefore prevent the model from learning more fine-
grained details explicitly. Another important distinction is
that our pipeline is easy to adopt and can be integrated
into any Transformer architecture with minimal changes re-
quired.

2.2. Transformers

[33] first introduced the Transformer architecture in the
field of natural language processing and showcased impres-
sive performance on a diverse set of language tasks. These
successes were translated to the computer vision field with
the development of ViT [5]. The seminal work proposed
splitting an image into fixed-length patches and feeding
them to a sequence of Transformer layers and demonstrated
the efficacy of a pure Transformer architecture for vision
tasks. One caveat, however, is that ViT requires much more
training data compared to CNNs. Since then, there have
been several works that have been proposed to apply Trans-
formers to a variety of vision tasks, including image genera-
tion, object detection, image segmentation, pose estimation,
and more recently human mesh recovery.

3. Method

Fig. 2 shows an overview of our approach. Specifically, we
first feed an input image with size 224 × 224 and predict
J body joint coordinates and V mesh vertex coordinates,
where J = 14 and V = 6890. We use three modules to
accomplish this task. First, a pretrained CNN extracts im-
age features which capture global context. Three sets of
learnable embedding tokens represent the joints, vertices,
and camera information respectively following [2]. Finally,
a Transformer encoder-decoder architecture progressively
generates a coarse mesh. We explore the details of our ar-
chitecture below.

Output Vertex and Joint Tokens

Self-Attention

Add & Norm

2D-3D Cross
Attention

Norm

Add & Norm

Vertex Granularity
Cross Attention

Add & Norm

MLP

Image and Camera Tokens

MLP

Vertex and Joint Tokens Upsampled Vertex and Joint Tokens

Norm

 Self-Attention

Add & Norm

MLP

Add & Norm

Output Image and Camera Tokens

Figure 3. Architecture of our encoder-decoder module. We pro-
pose incorporating a cross-attention module to enforce feature
consistency between low- and high-resolution vertex features at
each stage of the network.

3.1. Feature Extractor

The first part of our pipeline utilizes a convolutional neu-
ral network (CNN) for extracting relevant features from the
image. This network is pretrained for ImageNet classifica-
tion [4]. To obtain image features for our Transformer en-
coder, we feed an input image to generate 7× 7×D coarse
image features and then flatten them. Thus, we generate
49 image tokens which we denote as XI ∈ R49×D, where
D = 512.

3.2. Coarse-to-Fine Transformer

The second part of our pipeline is the coarse mesh gener-
ation and is shown in Fig. 3. Our network learns to pro-
gressively generate a fine-grained mesh and predict the 3D
human pose given the image features, XI and an initial
set of learnable joint tokens XJ ∈ RJ×D, representing
the number of modeled joints. Specifically, we employ an
encoder-decoder architecture with three stages with a sin-
gle encoder-decoder block in each stage. We condition our
mesh representation on the initial joint tokens by applying
an MLP layer on them to obtain the initial vertex tokens:
XV ∈ R48×D. The joint and vertex tokens are used to pre-
dict the 3D coordinates of the joints and mesh vertices re-
spectively. The details of our encoder-decoder architecture

Table 2. Ablation study of the Masked Joint Modeling objective
using different percentages of masked joint tokens, evaluated on
Human3.6M.

Max Percentage 0% 10% 20% 30% 40% 50%

PA-MPJPE 39.4 38.7 37.8 38.1 41.5 40.5
MPJPE 57.3 54.6 55.9 56.5 58.1 57.2

and upsampling mechanism are presented below.

3.2.1 Transformer Encoder

Our proposed Transformer encoder (as shown in Fig. 3 cap-
tures global-level features for the mesh generation. To this
end, we propose using the encoder to mine non-local in-
teractions between the image features. Additionally, fol-
lowing [2], we feed a learnable camera token XC which
captures crucial image and body information to predict the
weak-perspective camera parameters. These camera pa-
rameters are used to fit the estimated human mesh to the
2D input image. Given these features, the transformer en-
coder produces three sets of refined features: XC ∈ R1×D,
XI ∈ R49×D.

3.2.2 Transformer Decoder

The proposed Transformer decoder shown in Fig. 3 refines
the joint and vertex features via a series of self-attention and
cross-attention modules. Specifically, our module takes in
a set of three learnable embeddings: XJ ∈ RJ×D,XV ′ ∈
RV ′×D, and XV ∈ RV×D. XJ corresponds to the set of
joint tokens, while XV ′ and XV correspond to the set of
vertex tokens at the original resolution and upsampled res-
olution respectively. We first model the global interactions
between the joint and upsampled vertex features via a self-
attention layer. Next, we apply cross-attention between the
refined joint and vertex features and the output image and
camera features from the Transformer encoder to ensure the
spatial coherence of the 3D features.

Finally, we enforce feature consistency between the up-
dated joint and vertex tokens and the original resolution ver-
tex tokens by applying another cross-attention layer. Specif-
ically, we feed the updated joint and vertex tokens as the
queries and the original resolution vertex tokens as the keys
and values. Similar to [19], we apply random masking on
the joint features as an augmentation method to enable our
network to be robust to occlusions.

3.2.3 Coarse to Fine Upsampling Layer

In this section, we describe the specific implementation
of our coarse-to-fine pipeline. Following each encoder-
decoder stage, we use a coarse-to-fine upsampling layer to

Table 3. Ablation study of vertex-vertex cross attention.

Vertex-Vertex Cross Attention PA-MPJPE MPJPE

None 40.7 58.5
Vertex Cross-Attention at Beginning 40.3 55.3
Vertex Cross-Attention at End 38.7 54.6

gradually increase the feature resolution starting with an
initial set of 48 vertex tokens. Previous works [2, 18, 19]
utilized a progressive downsampling approach to gradually
reduce the embedding dimension D across each stage be-
fore predicting the 3D coordinates. To accomplish this, we
use an MLP layer to increase the number of vertex tokens at
the end of each stage. Our latent vertex features consist of
48, 192, and 384 tokens at each stage respectively. We then
apply another MLP layer on the last set of vertex features
to generate the coarse mesh representation V3D ∈ R431×3.
To predict the 3D coordinate locations of 14 key joints, we
similarly apply an MLP layer on the joint tokens and ob-
tain J3D ∈ R14×3. We follow the same protocol as [2] to
generate our fine-grained mesh representation. Specifically,
we first apply an MLP layer to upsample from 431 to 1723
vertices. We then use the pre-computed matrix from [29] to
obtain our final 6890× 3 mesh.

3.3. Training Details

3.3.1 3D Vertex Regression Loss

Given the output mesh coordinates V̂3D and the ground truth
mesh coordinates V̄3D, the 3D regression loss is computed
as follows:

LV =
1

M
||V̂3D − V̄3D||1

3.3.2 3D Joint Regression Loss

For the joint regression loss, we use two sets of predicted
joint coordinates. The first set is obtained from our model
directly, which predicts 3D joint coordinates, Ĵ3D in the
coarse-to-fine pipeline. The second set of joint coordinates
are obtained from our predicted mesh coordinates V̂3D.
Specifically, we use a predefined joint regression matrix
G ∈ RJ×V as is common practice in the literature. Thus,
our mesh generated 3D coordinates are Ĵ ′

3D = GV̂3D. Our
3D joint regression loss is as follows:

LJ =
1

M
(||Ĵ3D − J̄3D||1 + ||Ĵ ′

3D − J̄3D||1)

3.3.3 2D Joint Re-Projection Loss

Given the sparse amount of 3D mesh annotations available,
previous works have also relied on 2D re-projection losses
on the joint predictions to ensure alignment between the
predicted 3D joints and the input image. We use our cam-
era token to predict weak-perspective scale and translation

Table 4. Performance comparison with the previous state-of-the-art methods on 3DPW and Human3.6M datasets. ∗ indicates our training
results for the model following the specified protocol.

1* 3DPW Human3.6M
Method MPVE ↓ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓
HMR–R50 [12] – 130.0 76.7 88.0 56.8
GraphCMR–R50 [16] – – 70.2 – 50.1
SPIN–R50 [15] 116.4 96.9 59.2 62.5 41.1
I2LMeshNet–R50 [25] – 93.2 57.7 55.7 41.1
PyMAF–R50 [37] 110.1 92.8 58.9 57.7 40.5
ROMP–R50 [32] 105.6 89.3 53.5 – –
PARE–R50 [13] 99.7 82.9 52.3 – –
METRO–R50 [19] – – – 56.5 40.6
DSR–R50 [7] 99.5 85.7 51.7 60.9 40.3
FastMETRO-S–R50 [2] 91.9 79.6 49.3 55.7 39.4
FastMETRO-S–R50 [2]* 94.5 82.0 49.5 57.4 39.1
TORE-FastMETRO-L–R50 [6] 96.8 80.3 50.6 59.5 40.4

CoarseMETRO-S-R50 (Ours) 93.4 80.9 50.4 54.6 38.7

METRO–H64 [19] 88.2 77.1 47.9 54.0 36.7
MeshGraphormer–H64 [18] 87.7 74.7 45.6 51.2 34.5
FastMETRO-L–H64 [2] 84.1 73.5 44.6 52.2 33.7
FastMETRO-L–H64 [2]* 85.6 75.8 45.1 55.9 35.8
TORE-FastMETRO–H64 [6] 88.8 74.2 44.7 57.4 35.1

CoarseMETRO-S-H64 (Ours) 93.9 82.8 50.4 52.3 35.4

parameters, s, t where s ∈ R and t ∈ R2. We obtain the
predicted 2D joint locations by using the scale and transla-
tion parameters to form an orthographic projection matrix.
We apply this re-projection on both the directly predicted
3D joint coordinates and the 3D joint coordinates obtained
from the mesh. Thus the 2D joint re-projection loss is as
follows:

L2D
J =

1

M
(||Ĵ2D − J̄2D||1 + ||Ĵ ′

2D − J̄2D||1)

3.3.4 Total Loss

Following existing literature, we train our model with a
combination of 3D and 2D training datasets and use a se-
ries of loss coefficients for each loss as well as two binary
flags, α and β depending on whether 3D or 2D annotations
are available or not. Thus the total loss is as follows:

Ltotal = α · (LV + LJ) + β · L2D
J

4. Experiments
Our training paradigm matches that of [2]. Specifically, we
use the AdamW [22] optimizer with a learning rate of 10−4.
We set β1 = 0.9 and β2 = 0.999 and use a weight de-
cay of 10−4. Furthermore, we also apply gradient-clipping
based on the gradient norm, and set the clipping norm value

to 0.3. Our network is trained with a batch-size of 16 for
60 epochs. All networks with a ResNet-50 backbone were
trained on 4 A100 GPUs for approximately 2 days, while
networks with a HRNet-W64 backbone were trained on 8
A100 GPUs for approximately 4 days. At training time,
we apply the standard data augmentation protocol follow-
ing existing works [2, 14, 18, 19].

4.1. Datasets

Following the prior Transformer based works, we train our
model with the Human3.6M [11], UP-3D [17], MuCO-
3DHP [24], COCO [20], and MPII [1] training sets. For
evaluation, we use the P2 protocol in Human3.6M. We eval-
uate our model’s ability to generalize to more difficult poses
and scenes via the 3DPW dataset [34]. Following previous
works, we first finetune our model with the 3DPW training
set. Additionally, given that ground-truth is not provided
for the Human3.6M dataset, we follow prior Transformer-
based works and use pseudo 3D human mesh obtained by
SMPLify-X [28] to train our models. To ensure a fair com-
parison, we use the ground-truth 3D human joints in the
testing set for evaluation. For our feature extractor, we use
ResNet-50 [10]. We also investigate the use of more pow-
erful backbones such as HRNet-W64 [35].

Figure 4. Qualitative results of CoarseMETRO on Human3.6M and 3DPW. We visualize the results from the CoarseMETRO–S–H64
model. We show several different categories of poses including occlusions to show that our method is robust to many types on images.
4.1.1 Evaluation Metrics

We use three evaluation metrics: MPJPE [11], PA-
MPJPE [40], and MPVPE [27]. The units for these met-
rics is millimeters. MPJPE (mean-per-joint-position-error)
measures the Euclidean distance between the predicted and
ground-truth joint 3D coordinates. PA-MPJPE uses Pro-
crustes Analysis [9] to perform 3D alignment and then
measures the MPJPE. Lastly, MPVPE (mean-per-vertex-
position-error) measures the Euclidean distances between
the predicted and ground-truth vertex coordinates.

4.2. Experimental Results

In order to demonstrate the efficacy of our approach, we
evaluate our model on the Human3.6M and 3DPW datasets.
Each dataset has their own unique set of challenges. For in-
stance, the Human3.6M dataset consists of simpler scenes
where the difficulty lies in accurately modeling human
shape. Contrastingly, the 3DPW dataset captures more in-
the-wild scenes and requires a model to generalize well to
a variety of settings and human poses. We find that our
model achieves competitive performance on both bench-
marks. We primarily perform comparisons against other
Transformer-based methods including METRO [19], Mesh
Graphormer [18], FastMETRO [2], and TORE [6]. For fair
comparisons, we evaluate our model with two backbone set-
tings, namely ResNet-50 and HRNet-W64. The results are
shown in Table 4. We also rerun FastMETRO’s experiments
and report the results we obtain after training the models
with the provided code.

We first observe that our model with the ResNet-50 back-
bone improves upon FastMETRO by 0.8mm for PA-MPJPE
and 0.9mm for MPJPE on the Human3.6M dataset. This
highlights that our coarse-to-fine approach is able to in-fact
leverage redundancy in the vertex token representation to
generate a more robust mesh representation with respect to
pose and shape. Furthermore, compared to TORE, we find

that our model has remarkable improvements on both met-
rics for the Human3.6M dataset despite using only a sin-
gle Transformer encoder-decoder layer. When applying the
HRNet-W64 backbone, we note that our trained version of
FastMETRO performs quite worse than reported results on
the Human3.6M dataset (by about 2mm for both metrics).
Moreover, we observe that our model is able to closely
match the FastMETRO-L configuration while only using a
tenth of the FLOPS. When comparing against TORE, we
can see a 5.1mm improvement in MPJPE while using the
same number of FLOPS and fewer parameters.

When examining our results on the 3DPW dataset, we
note our approach is fairly competitive with FastMETRO
and TORE for the ResNet-50 backbone, however there is a
relative performance drop when using the higher-resolution
backbone. We hypothesize that this could be a limitation of
using only a single Transformer block in each layer.

4.2.1 Computational Efficiency

In this section, we analyze the computational complexity of
our approach and previous Transformer methods. We show
these results in Table 1. We find that our coarse-to-fine ap-
proach is able to reduce the number of Transformer param-
eters by 51% while still maintaining performance. Further-
more, our approach leads to a 10x decrease in FLOPS and
5x reduction in activation counts. It is crucial to note that
our network still models vertex features across all stages of
the network and is thus able to still learn shape information
explicitly rather than through just joint token as in [6].

4.3. Ablation Results

We conduct an extensive array of experiments on the Hu-
man3.6M dataset to demonstrate the effectiveness of each
of our components. First, we investigate how incorporating
cross-attention between vertex features of different granu-
larities improves performance as shown in Table 3. To this

Vertex 2 Image Attention Vertex 8 Image Attention Vertex 11 Image Attention Vertex 22 Image Attention Vertex 43 Image Attention

Vertex 2 Image Attention Vertex 8 Image Attention Vertex 11 Image Attention Vertex 22 Image Attention Vertex 43 Image Attention

Vertex 2 Image Attention Vertex 8 Image Attention Vertex 11 Image Attention Vertex 22 Image Attention Vertex 43 Image Attention

Figure 5. Decoder Vertex Cross-Attention Maps These attention maps visualize which image regions our vertex tokens are attending to
at the first stage of our network. Note that our vertex tokens consistently attend to meaningful body regions across different images.

end, we first train a baseline model with no cross-attention
and observe a noticeable decrease in performance by about
2mm in PA-MPJPE and 4mm for MPJPE. This indicates
that cross-attention is crucial for the network to more re-
liably upsample the coarse set of vertex features into the
full mesh representation. Furthermore, we explore differ-
ent placement strategies, specifically either applying cross-
attention at the beginning or end of the decoder network.
We observe that while adding the cross-attention at the start
does improve upon the baseline, the 2D-3D cross-attention
applied subsequently could reduce its effects.

Many previous works incorporating Transformers for
human mesh recovery have relied on some form of masking
to increase the robustness of the model. METRO [19] and
Mesh Graphormer [18] specifically utilized random mask-
ing on the joint and vertex features, while FastMETRO [2]
applies masking on non-adjacent joints to force the Trans-
former to focus on local relationships. Since our initial ver-
tex representation is formed from an initial set of 14 joint to-
kens, we only apply random masking on this set of features.
The results are shown in a Table 2. We observe that apply-
ing 10-30% masking achieves good results while masking
too many of the input tokens (i.e. 40-50%) prevents the net-
work from modeling important inter-joint and joint-image
relationships.

4.4. Attention Map Analysis

In order to better understand what relationships are being
captured by our attention maps, we visualize the interme-

diate features in our Transformer block and examine which
regions our latent vertex features are attending to.

As shown in Fig. 5, we inspect the cross-attention maps
between specific vertex tokens and all of the image tokens
from the first decoder layer in our network. We average
the attention scores from all heads and reshape the attention
maps to match the original image size. We observe that the
specific tokens accurately focus on the relevant regions in
the image. Despite our latent vertex tokens not being de-
fined by a pre-existing mesh topology, we find that they are
able to learn to meaningful body parts in the image consis-
tently across different images. For example, vertex 2 can
be seen to focus mostly on the left-hip area of the person,
while vertex 43 seems to focus more on the left hand/wrist.

5. Conclusion
In this work, we introduce a coarse-to-fine approach for hu-
man mesh recovery using an encoder-decoder Transformer
architecture. Specifically, we introduce a strategy to ini-
tialize a mesh representation with a set of joint tokens and
then gradually upsample and refine these features through a
novel cross-attention module. We evaluate this model on the
Human3.6M and 3DPW dataset and showcase competitive
results with a remarkable reduction in parameters, FLOPs,
and activation counts. Future work could build upon this
and apply non-parametric models to the task of human mesh
recovery from videos. Other avenues would be to incor-
porate human pose and shape priors to even further boost
model efficiency.

Figure 6. Encoder Self-Attention Maps This shows the self-attention maps between the image features and the camera token in the
encoder block. Each row displays the attention map from the corresponding layer (e.g. the first row shows the maps from the first encoder
layer). It can be seen that the attention maps initially focus on specific image tokens and then gradually attend more towards the camera
token features.

6. Implementation Details

In this section, we describe in further detail the codes used
to develop CoarseMETRO and our choice of hyperparam-
eters for training. We implemented our CoarseMETRO
model using Pytorch [26] and experimented with two pre-
trained feature extractors: ResNet-50 [10] and HRNet-
W64 [35]. Each backbone network was initialized with pre-
trained ImageNet [4] weights and further fine-tuned during
training. We use the backbone network to generate an out-
put feature map of size 7 × 7 × 2048 and apply a single
MLP layer to reduce the channel dimension to size 512.
Our Transformer model consists of three encoder-decoder
layers with a single block per layer and is randomly ini-
tialized using Xavier [8] initialization. Each attention mod-
ule in our network uses 8 heads. Similar to [2], we ap-
ply sinusoidal positional encodings on our flattened image
features before passing them to the Transformer network.
Additionally, we also rely on a sparse pre-computed mesh
upsampling matrix from [29] to upsample our coarse mesh
representation with 1723 vertices to obtain the fine-grained
6890-vertex mesh. This matches the number of vertices in

the SMPL [21] model.

7. Extended Attention Map Analysis
In this section, we extend our visualization of the attention
maps to examine the intermediate features in the encoder
blocks of the Transformer as well as validate that our joint
tokens are corresponding to the correct regions of the image.

We first examine the attention maps captured by our
Transformer encoder layers as shown in Fig. 6. Each layer’s
attention maps are shown row-wise. It can be observed
that the initial attention maps focus more on specific image
tokens corresponding to regions of interest. The last two
stages of attention maps highlight how the encoder gradu-
ally focuses more on the camera token. This demonstrates
that our model is effectively distilling image-level informa-
tion into the camera token over multiple Transformer blocks
while still placing some focus on the relevant image regions.

Next, we demonstrate that our joint tokens meaningfully
attend to the image tokens. In Fig. 7, we inspect the cross-
attention maps between specific joint tokens and all of the
image tokens from the first decoder layer in our network.

R_Ankle Image Attention L_Ankle Image Attention R_Wrist Image Attention L_Wrist Image Attention Head Image Attention

R_Ankle Image Attention L_Ankle Image Attention R_Wrist Image Attention L_Wrist Image Attention Head Image Attention

R_Ankle Image Attention L_Ankle Image Attention R_Wrist Image Attention L_Wrist Image Attention Head Image Attention

Figure 7. Decoder Joint Cross-Attention Maps These attention maps visualize which image regions our joint tokens are attending to at
the first stage of our Transformer network. We observe that our joint tokens consistently attend to the key corresponding areas in the image.

As previously mentioned, we average the attention scores
from all heads and reshape the attention maps to match the
original image size. We observe that the specific tokens ac-
curately focus on the relevant regions in the image. For
instance, on the third row it can be seen that the joint to-
ken corresponding to the left ankle is attending most to the
baseball player’s left ankle.

8. Additional Results
We display additional results of our proposed ap-
proach on the Human3.6M [11] and 3DPW [34]
test sets in Fig. 8. As can be seen, our model
can robustly capture the human shape and pose de-
spite challenging occlusions and background settings.

References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2014. 6

[2] Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh. Cross-
attention of disentangled modalities for 3d human mesh re-
covery with transformers. In European Conference on Com-
puter Vision, pages 342–359. Springer, 2022. 1, 3, 4, 5, 6, 7,
8, 9

[3] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.
Pose2mesh: Graph convolutional network for 3d human pose

and mesh recovery from a 2d human pose. In European Con-
ference on Computer Vision, pages 769–787. Springer, 2020.
1, 3, 4

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 4, 9

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 4

[6] Zhiyang Dou, Qingxuan Wu, Cheng Lin, Zeyu Cao,
Qiangqiang Wu, Weilin Wan, Taku Komura, and Wenping
Wang. Tore: Token reduction for efficient human mesh re-
covery with transformer, 2022. 3, 6, 7

[7] Sai Kumar Dwivedi, Nikos Athanasiou, Muhammed Ko-
cabas, and Michael J. Black. Learning to regress bodies from
images using differentiable semantic rendering. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 11250–11259, 2021. 6

[8] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, 2010. 9

[9] John C Gower. Generalized procrustes analysis. Psychome-
trika, 40(1):33–51, 1975. 7

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Figure 8. Extended Qualitative Results on Human3.6M and 3DPW. We visualize more results from the CoarseMETRO–S–H64 model.
We again see that our model is robust to variations in different scenes with respect to pose, background, and camera viewpoint.

Deep Residual Learning for Image Recognition. In Proceed-
ings of 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 770–778. IEEE, 2016. 6, 9

[11] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-
ments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2013. 3, 6, 7, 10

[12] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, 2018. 6

[13] Muhammed Kocabas, Chun-Hao P Huang, Otmar Hilliges,
and Michael J Black. Pare: Part attention regressor for 3d
human body estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 11127–
11137, 2021. 1, 3, 6

[14] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, 2019. 6

[15] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black,
and Kostas Daniilidis. Learning to reconstruct 3d hu-

man pose and shape via model-fitting in the loop. CoRR,
abs/1909.12828, 2019. 6

[16] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In CVPR, 2019. 1, 3, 6

[17] Christoph Lassner, Javier Romero, Martin Kiefel, Federica
Bogo, Michael J Black, and Peter V Gehler. Unite the peo-
ple: Closing the loop between 3d and 2d human representa-
tions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6050–6059, 2017. 6

[18] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12939–12948, 2021.
1, 3, 5, 6, 7, 8

[19] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1954–1963, 2021. 1, 3, 5, 6,
7, 8

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Mi-

crosoft coco: Common objects in context, 2014. cite
arxiv:1405.0312Comment: 1) updated annotation pipeline
description and figures; 2) added new section describing
datasets splits; 3) updated author list. 6

[21] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1–16, 2015. 1, 3, 9

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[23] Xiaoxuan Ma, Jiajun Su, Chunyu Wang, Wentao Zhu, and
Yizhou Wang. 3d human mesh estimation from virtual mark-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 534–
543, 2023. 3, 4

[24] Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll,
and Christian Theobalt. Single-shot multi-person 3d pose
estimation from monocular rgb. In 2018 International
Conference on 3D Vision (3DV), pages 120–130. IEEE,
2018. 6

[25] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-
to-lixel prediction network for accurate 3d human pose and
mesh estimation from a single rgb image. In ECCV, 2020. 6

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
9

[27] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas
Daniilidis. Learning to estimate 3d human pose and shape
from a single color image. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
459–468, 2018. 7

[28] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive body capture: 3d hands,
face, and body from a single image. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10975–10985, 2019. 1, 3, 6

[29] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolutional
mesh autoencoders. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 704–720, 2018. 5,
9

[30] Meta AI Research. fvcore. https://github.com/
facebookresearch/fvcore, 2023. 3

[31] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 36(6), 2017. 3

[32] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and
Tao Mei. Monocular, one-stage, regression of multiple 3d
people. In ICCV, 2021. 6

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 4

[34] Timo von Marcard, Roberto Henschel, Michael Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3d
human pose in the wild using imus and a moving camera. In
European Conference on Computer Vision (ECCV), 2018. 6,
10

[35] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution repre-
sentation learning for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 43(10):3349–
3364, 2020. 6, 9

[36] Yusuke Yoshiyasu. Deformable mesh transformer for 3d hu-
man mesh recovery. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
17006–17015, 2023. 3

[37] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang,
Yebin Liu, Limin Wang, and Zhenan Sun. Pymaf: 3d human
pose and shape regression with pyramidal mesh alignment
feedback loop. In Proceedings of the IEEE International
Conference on Computer Vision, 2021. 1, 3, 6

[38] Ce Zheng, Matias Mendieta, Taojiannan Yang, Guo-Jun Qi,
and Chen Chen. Feater: An efficient network for human
reconstruction feature map-based transformer. 3

[39] Ce Zheng, Xianpeng Liu, Guo-Jun Qi, and Chen Chen.
Potter: Pooling attention transformer for efficient human
mesh recovery. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1611–
1620, 2023. 3

[40] Xiaowei Zhou, Menglong Zhu, Georgios Pavlakos, Spyri-
don Leonardos, Konstantinos G Derpanis, and Kostas Dani-
ilidis. Monocap: Monocular human motion capture using a
cnn coupled with a geometric prior. IEEE transactions on
pattern analysis and machine intelligence, 41(4):901–914,
2018. 7

[41] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5745–
5753, 2019. 1

https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore

	. Introduction
	. Related works
	. Human Mesh Recovery
	. Transformers

	. Method
	. Feature Extractor
	. Coarse-to-Fine Transformer
	Transformer Encoder
	Transformer Decoder
	Coarse to Fine Upsampling Layer

	. Training Details
	3D Vertex Regression Loss
	3D Joint Regression Loss
	2D Joint Re-Projection Loss
	Total Loss

	. Experiments
	. Datasets
	Evaluation Metrics

	. Experimental Results
	Computational Efficiency

	. Ablation Results
	. Attention Map Analysis

	. Conclusion
	. Implementation Details
	. Extended Attention Map Analysis
	. Additional Results

