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Abstract— Preference feedback collected by human or VLM
annotators is often noisy, presenting a significant challenge for
preference-based reinforcement learning that relies on accu-
rate preference labels. To address this challenge, we propose
TREND, a novel framework that integrates few-shot expert
demonstrations with a tri-teaching strategy for effective noise
mitigation. Our method trains three reward models simul-
taneously, where each model views its small-loss preference
pairs as useful knowledge and teaches such useful pairs to its
peer network for updating the parameters. Remarkably, our
approach requires as few as one to three expert demonstrations
to achieve high performance. We evaluate TREND on various
robotic manipulation tasks, achieving up to 90% success rates
even with noise levels as high as 40%, highlighting its effective
robustness in handling noisy preference feedback.

I. INTRODUCTION

A key challenge when using reinforcement learning (RL)
to train autonomous agents for various tasks is defining
a suitable reward function. The reward function needs to
give dense feedback to guide the agent’s learning while
preventing unintended behaviors (series of actions) that
might earn high rewards but do not match the user’s intent.
However, creating an effective reward function is often
complex and time-consuming. It involves multiple rounds of
testing with different adjustments to ensure the agent learns
the intended behavior without developing unplanned habits.

To address these difficulties, Preference-based Reinforce-
ment Learning (PbRL) has emerged as a promising approach.
PbRL sidesteps the challenge of explicitly designing a re-
ward function by instead using human preferences as the
reward signal [1–6]. PbRL employs a human-in-the-loop
methodology, where humans provide preference feedback
by comparing pairs of trajectory segments and labeling
which segment is closer to the goal. This approach ad-
dresses the challenge of designing explicit reward functions
and can result in behaviors that are better aligned with
human intent [1]. Recent advances in this domain have
integrated vision-language models (VLMs) [7], which can
autonomously generate preferences, potentially reducing the
need for direct human involvement.

However, in practice, both human and VLM-generated
preference labels can be noisy and inconsistent. Human
feedback is prone to bias and VLM labels often struggle with
interpreting visual content, task-specific text, and temporal
dynamics. For example, if two behaviors are qualitatively
similar, it is likely that the preference labels provided by
either human annotators or VLMs are not meaningful. As
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shown later in our experimental analysis (Sec. V-C), VLM
preference labels can have a noise rate up to 40%, making
them insufficient for reward learning without denoising. To
make matters worse, a recent work [8] showed that even
a 10% label corruption rate can significantly degrade per-
formance. This underscores the need for robust preference-
based RL methods that can effectively handle noisy labels.

In this work, we propose Tri-teaching for Robust
Preference-based Reinforcement Learning with Demonstra-
tions (TREND), a novel framework to address the challenge
of noisy preference labels, as shown in Figure 1. Our key
insight is the use of peer models to identify clean samples
from a batch of noisy labels, instead of using a single model
that can be biased in its estimation of noise. We therefore
introduce a tri-teaching strategy where three reward models
collaboratively select samples for training. Each model an-
swers the question, “Which preference pair is more likely
to have clean labels?”, by computing losses over preference
pairs and labeling those with small losses as likely clean.
These selected pairs are then used to update the other models.

Our tri-teaching strategy is advantageous compared with
existing works that simply average multiple reward model’s
predictions for sample selection [9] for the following
reasons: (a) each peer model independently develops
expertise in sample selection, enhancing robustness to noise,
and (b) the definition of clean samples is dynamically
learned from peer models rather than being fixed.

Additionally, to further combat extremely noisy preference
labels, we integrate few-shot expert demonstrations into both
pretraining and online PbRL adaptation. This provides a
strong initialization for policy and ensures that at least some
of the training data remains free of noise during online
learning. Our experimental results demonstrate that under the
extremely high noise rate of 40%, even a few demonstrations
(1-3), we can achieve a success rate of ∼80%.

We evaluate our proposed method, TREND, on robotic
manipulation tasks from Meta-world [10]. Our approach
consistently outperforms baseline methods by a large margin,
even under high noise (e.g., with noise rates up to 40%). We
also conduct a detailed ablation study to demonstrate the
benefits of our key components. The main contributions of
this work are as follows:
• We present TREND, a novel framework that integrates

expert demonstrations for robust learning under noisy
preferences.

• We introduce a simple yet effective tri-teaching strategy
for effective label denoising, leveraging peer models for
cyclic clean feedback selection.



Fig. 1: Overview of our method TREND. First, we pretrain the policy network using behavior cloning (BC) with few-shot
expert demonstrations for effective exploration (A). In the online training phase, noisy preferences are collected from human
annotators or a vision-language model (B1). We then apply our tri-teaching strategy for denoised reward learning, where
three collaborative reward models identify clean preference samples for each other (B2). Finally, the learned reward model
is used to guide the agent’s training (B3), ensuring robust performance despite noisy labels.

• TREND consistently outperforms existing PbRL base-
lines across a range of robotic manipulation tasks on
Meta-World, even under varying levels of label noise.
Notably, in scenarios with an extremely high noise rate
of 40%, TREND achieves significant improvements in
success rates: nearly 40% on the Button-Press task, 60%
on the Drawer-Open task, and 70% on the Hammer
task, compared to baselines using the same number of
demonstrations. Even with noisy VLM-generated pref-
erence labels, TREND demonstrates an impressive suc-
cess rate improvement of over 40% on the Drawer-Open
task, showcasing its robustness in handling noisy data.

II. RELATED WORK

Preference-based RL. While providing precise rewards for
many tasks can be challenging for humans, expressing pref-
erences for certain actions or states is often more intuitive
and easier. Due to the simplicity and richness of relative
preferences, preference-based reinforcement learning (PbRL)
has gained significant attention in recent years [2–6, 8, 11].
Various approaches have been proposed to enhance the
sample efficiency of PbRL. For example, PEBBLE [1] uses
unsupervised policy pre-training to warm-start the policy
and encourage exploration from the outset, while [12] uses
imitation from expert demonstrations for policy initialization.
Other works have focused on developing sampling strategies
to select informative preference queries [3, 13, 14] and ad-
dressing exploration challenges by estimating reward model
uncertainty [15].
Noisy label learning. Another critical issue with PbRL is
its sensitivity to noise in preference labels. Lee et al. [8]
showed that even a modest 10% rate of corrupted preference
labels can substantially impair algorithmic performance. This
concern becomes more pronounced in broader application
contexts where preferences are collected from non-experts,

increasing the likelihood of noise in labels. The issue of
noisy labels is well-studied in the context of supervised
learning [16] with proposed solutions such as sample selec-
tion methods [17, 18], architectural modifications for noise
adaptation [19], and regularization [20]. These methods,
however, are not easily transferable to PbRL due to lim-
ited sample sizes [9]. To alleviate this problem in PbRL,
[21] introduced an encoder-decoder framework to capture
diverse human preferences and improve robustness, though
it required a substantially larger amount of preference data.
RIME [9] introduced a dynamic sample selection method
using a denoising discriminator to filter out the noise and
incorporate a warm start strategy to mitigate errors from
noisy labels. In contrast, we select reliable samples by a
tri-teaching method and, optionally, explicitly incorporate a
few expert demonstrations to combat extremely high noise.

Vision Language Models (VLMs) for RL. Recent ad-
vancements in integrating Vision Language Models (VLMs)
into reinforcement learning (RL) have shown promising out-
comes, particularly in reward specification and preference-
based methods. LLMs/VLMs have been employed to gen-
erate reward functions from text descriptions of goals, such
as generating reward code directly [22] or serving as proxy
reward functions aligned with given prompts [23]. Beyond
reward generation, VLMs have been utilized for generating
preference feedback, such as in RL-VLM-F [7], which uses
VLMs to generate preference labels over pairs of the em-
bodied agent’s image observations. However, a key problem
with VLM-generated preference labels is that they are often
unreliable leading to high noise, so directly feeding all VLM
feedbacks can lead to suboptimal (or worse) performance. In
this work, we address this issue by introducing a tri-teaching
method, supplemented with a few expert demonstrations, to
denoise VLM’s noisy preference labels.



III. PRELIMINARIES

Preference-based RL. In classical RL [24], an agent learns
by interacting with the environment for T discrete time steps.
At each step t the agent observes the environment state st and
then uses a policy π to choose an action at. After executing
the action, the environment returns a reward r and transitions
to the next state st+1 following the environment’s dynamics.
The objective of the learning agent is to learn a policy
that maximizes the expected return, which is the discounted
cumulative reward over time: Rt =

∑∞
k=0 γ

kr(st+k, at+k)
where γ ∈ [0, 1) is the discount factor, which balances the
agent’s preference for immediate versus long-term rewards.

Defining an explicit reward function can be difficult or
infeasible in many real-world tasks. PbRL addresses this by
relying on a teacher (often a human or an expert model) to
provide feedback in the form of preferences between differ-
ent behaviors (trajectory segments) of the agent [1, 9, 25, 26]
(e.g., in Fig 1 B1). Instead of receiving scalar rewards from
the environment, the agent learns from the teacher’s prefer-
ences, using them to construct an internal reward model.

Formally, a trajectory σ is defined as a sequence of state-
action pairs {(sk, ak), . . . , (sk+H−1, ak+H−1)} over a fixed
segment size H . Given two trajectory segments σ0 and σ1,
the teacher provides feedback in the form of a preference
label ỹ ∈ {(1, 0), (0, 1), (0.5, 0.5)}. A “preference” is ex-
pressing which is preferred between pairs of clips of the
agent’s behavior, essentially distinguishing which segment
has a higher reward. Here, ỹ = (1, 0) indicates σ0 ≻ σ1.
Correspondingly, ỹ = (0, 1) indicates σ1 ≻ σ0, and ỹ =
(0.5, 0.5) indicates that the teacher is indifferent between
the two trajectories. The teacher’s feedback is stored in a
dataset D as a tuple (σ0, σ1, ỹ). The agent uses this data to
learn a reward function rψ .

The probability that the teacher prefers σ1 over σ0 can be
modeled using the Bradley-Terry model [27], based on the
estimated reward function rψ as

Pψ[σi ≻ σj ] =
exp

(∑
t r̂ψ(s

i
t, a

i
t)
)∑

i∈{j,i} exp
(∑

t r̂ψ(s
i
t, a

i
t)
) . (1)

The reward function rψ is learned by minimizing the cross-
entropy between the predicted preference and the label
provided by the teacher. The loss function is defined as:

LCE(ψ) = E [ℓReward] = −E
[
ỹ(0) lnPψ[σ0 ≻ σ1]

+ ỹ(1) lnPψ[σ1 ≻ σ0]
]

(2)

IV. TREND: TRI-TEACHING FOR ROBUST PBRL WITH
DEMONSTRATIONS

In this section, we will describe our approach, Tri-teaching
for Robust Preference-based Reinforcement Learning with
Demonstrations (TREND), in detail. TREND simultaneously
trains three reward networks. Each reward model updates its
parameters by using the preference pairs selected from the
peer network via our proposed tri-teaching (Sec. IV-A). To
further mitigate the impact of noise, we can leverage expert
demonstrations in the learning process (Sec. IV-B).

A. Tri-teaching for Preference Data Selection

Following the small-loss principle [18], we hypothesize
that the loss of a preference pair is positively correlated
with how noisy the label is. Since a single model can be
biased in its estimation of noise, potentially leading to error
accumulation, we introduce a tri-teaching strategy where
three peer reward networks collaboratively select samples
for training. Each network answers the question, “Which
preference pair is more likely to have clean labels?” and
teaches the other networks by providing these samples for
training. We use three teachers as existing work [1, 2, 9] used
an ensemble of three reward models to improve the stability
in reward learning. Using an odd number of experts [28, 29]
is also a standard practice to avoid ties and provide a majority
consensus signal.

Formally, we define a selection loss LDψ to quantify how
noisy the label is as estimated by the reward model rψ . Given
a batch of training preference data D = {(σi0, σi1, ỹi)}Ni=1,
where (σi0, σ

i
1) is a pair of trajectory segments, and ỹi

represents the corresponding preference label, we compute
the selection loss for model ψk as

LDψk
=

1

N

N∑
i=1

ℓreward((σ
i
0, σ

i
1), ỹi;ψk), k ∈ {1, 2, 3}, (3)

where k is the index of reward models.
During training, each reward model ψk identifies the

subset of samples that have the smallest selection loss within
a batch of preferences. The size of the subset is determined
by a selection rate γ, which controls the proportion of
samples retained. These samples are considered clean and
are passed to a peer model for training. The selected data
for peer training is defined as

Dk←j = argmin
D̄:|D̄|≥γ|D| and D̄⊆D

LD̄ψj
. (4)

Here (k, j) ∈ {(2, 1), (3, 2), (1, 3)}, and Dk←j denotes the
clean preferences identified by the reward model rψj

which
are then selected as training samples for rψk

. In this way,
the three models exchange opinions on which samples are
clean, thereby enabling each to learn from its peers.

After the selection process, each reward model updates its
parameters by using the preference pairs selected from the
peer network as

ψk = ψk − η∇ψk
LDk←j

ψk
. (5)

This process is cyclic, where r̂ψ1
selects for r̂ψ2

, r̂ψ2
selects

for r̂ψ3 , and r̂ψ3 selects for r̂ψ1 . This tri-teaching strategy
allows the models to collaboratively denoise the labels and
improve learning stability despite noisy preferences.

B. Incorporating Few-shot Expert Demonstrations

In the presence of noisy preference labels, purely learning
from trial and error through online reinforcement learning
can lead to sub-optimal performance. To further mitigate the
impact of noise and to provide a clean supervisory signal,
we incorporate expert demonstrations into the pertaining and
online training process. Expert trajectories offer high-quality
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Fig. 2: Learning curves for robot manipulation tasks on Meta-world. Each row represents results for a specific task and
each column corresponds to a different error rate ϵ. Results are averaged over five random seeds. Shaded Areas represent
standard deviation across random seeds.

information, which is particularly valuable when learning
under high-noise conditions. These demonstrations serve to
guide the agent toward better behavior by ensuring that a
portion of the training data is noise-free.

Our method builds upon the widely used PbRL algorithm
PEBBLE [1]. In the early stages of training, querying the
teacher for preference labels often yields uninformative re-
sults, as the agent’s policy tends to be random and the states
uninteresting. To mitigate this issue, PEBBLE [1] introduced
unsupervised exploration through pretraining the agent with
an intrinsic reward based on state entropy [30], a strategy
that has been widely adopted in subsequent research [2, 9].

To encourage more diversified exploration, we replace the
unsupervised exploration phase of the PEBBLE algorithm
with policy pretraining on demonstration data using behavior
cloning (BC). Even though we are only using a few demon-
strations, BC pretraining is significantly more effective than
PEBBLE’s intrinsic reward-based pretraining [1, 30]. BC es-
tablishes a stronger prior for the policy, enhances exploration,
and improves the sampling of informative preference pairs.

Next, after the policy initialization phase by BC, during
the online training phase, for each batch of training data, we
sample a proportion of α% from the expert demonstration
dataset Dexpert, where α% controls the proportion of expert
demonstrations. For the remaining data, we sample from

the non-expert RL replay buffer Dreplay. Specifically, for
data from the expert demonstrations, we update the policy
network πθ using the BC loss as

LBC
πθ

= E(st,at)∼Dexpert

[
∥πθ(st)− at∥2

]
. (6)

For non-expert data from the replay buffer, we apply the
standard Soft Actor-Critic (SAC) [31] loss to update the
policy network πθ

LSAC
πθ

= Est∼Dreplay,at∼πθ(·|st) [α log πθ(at | st)−Qϕ(st, at)] ,

where Qϕ is the critic network. We then update the policy
network πθ using a weighted average of the two losses as

LTREND
πθ

= LSAC
πθ

+ λBCLBC
πθ
. (7)

This way, the BC loss serves as a strong regularization term
during online training, helping the policy network retain its
BC initialization and avoid over-reliance on noisy preference
data, which is especially beneficial in high-noise conditions.

V. EXPERIMENTS

A. Experimental Setup

Tasks. We evaluate TREND on three robotic manipulation
tasks from Meta-world [10]: Button-Press, Drawer-Open,
and Hammer. These tasks are visually rich, with diverse
textures and shading, requiring precise, fine-grained control
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Fig. 3: Contribution of each component on Button-Press
(ϵ = 40%). Our tri-teaching boosts performance significantly,
and adding a single expert demonstration further enhances
success, emphasizing the need for both components.

to successfully manipulate objects. The tasks are shown in
the first column of Figure 2.

To analyze our method’s effectiveness, we consider two
types of noisy annotators: one that generates preferences
using a scripted policy and another that utilizes a VLM-based
preference generator.
Scripted Noisy Preference Annotator. We generate syn-
thetic preference feedback with an oracle reward following
the technique used in previous works [1, 9]. Specifically,
we assume a scripted teacher that determines the preference
between two trajectory segments based on the sum of the
ground-truth reward for each segment. To introduce noise,
we flip each preference label with a probability of ϵ =
20%, 30%, 40% as done in RIME [9]. This allows us to easily
control the level of noise in preference labels.
VLM Preference Annotator. We also evaluate TREND
using preference labels generated by a VLM. This approach
follows the work done in RL-VLM-F [7]. For all VLM
experiments, we use Gemini-1.5-Flash [32]. We prompt the
VLM using rendered images of the two trajectory segments
and the task description and obtain the generated preference
label following [7]. If the VLM predicts that the provided
segments are too similar, it will return a “no preference”
answer and we skip this pair for reward training [7].
Implementation Details. We use PEBBLE [1] as our back-
bone algorithm. For the tri-teaching part of our method, we
set γ = 0.4 (in Eq. 4). TREND uses 1 expert demonstration
for Button Press, 2 for Drawer Open, and 3 for Hammer, with
the BC loss coefficient λ = 4.0 (in Eq. 7). The proportion of
sampling expert demos α% is linearly decayed from 50%
to 25% within the first 50k timesteps. We use the same
hyperparameters for all experiments unless otherwise stated.

All other hyperparameters are consistent with PEBBLE.
Both the baselines and our method use an ensemble of three
reward models. The segment size H (i.e., length of σ) is 50.
Preference queries are selected using disagreement sampling,
following [9]. Disagreement sampling chooses pairs with
high uncertainty based on the variance across an ensemble
of predictors. All baseline methods are implemented using
publicly available repositories. We run each experiment with
five random seeds and report the average performance with
standard deviations.

TREND-VLM-F (Ours)
RL-VLM-F+Demo
RL-VLM-F Incorrect

36.4%

Correct 
60.7%

No Preference
2.9%

(a) Results w/ VLM Preference Labels (b) VLM Label Quality
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Fig. 4: Results on Drawer-Open using VLM (Gemini-
1.5-flash) to generate preference feedback. Our TREND-
VLM-F achives the best performance (left) under the high
noise rate of VLM labels (right).

B. Main Results

Figure 2 presents the learning curves of TREND alongside
baseline methods on Meta-world, evaluated across three
tasks: Button-Press (easy), Drawer-Open (moderate), and
Hammer (hard). We compare our method against PEB-
BLE [1], which lacks denoising techniques, and RIME [9],
the current state-of-the-art (SOTA) method for denoising
in preference-based reinforcement learning (PbRL). For a
fair comparison, we incorporated expert demonstrations into
both PEBBLE and RIME in the same way and the same
amount as ours, referring to these as PEBBLE+demo and
RIME+demo. We also include a behavior cloning (BC)
baseline learning purely from the demonstrations without
reinforcement learning.

As shown in Figure 2, our approach consistently outper-
forms all baselines across all noise levels, from 20% to 40%.
Notably, we achieve over 80% success at 40% noise with just
1 demonstration for Button-Press, 2 for Drawer-Open, and
3 for Hammer. This success is driven by our tri-teaching
strategy for label selection and the integration of expert
demonstrations. On average the baselines either perform
at half of our success rate or fail completely. TREND is
also superior to PEBBLE+demo and RIME+demo, show-
ing the benefits of TREND come from both the expert
demonstrations and the cross-model selection, not the expert
demonstrations alone. These results underscore TREND’s
robustness to noisy preferences and its effectiveness in high-
noise environments.

C. Ablation Study

Effects of individual components. We study the effects of
individual components as shown in Figure 3. When 40%
of the labels are noisy, PEBBLE (grey) completely fails,
as it lacks any denoising mechanism. However, when our
tri-teaching strategy is applied, the success rate jumps to
approximately 40% (green), highlighting its effectiveness in
selecting clean labels from noisy data. Adding just one expert
demonstration on top of the tri-teaching (orange) boosts the
success rate to around 90%, demonstrating the critical role of
even minimal clean supervision. Notably, adding an expert
demo to PEBBLE alone (blue) does help avoid total failure,
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Fig. 5: (Left): Comparison between our method (w. Tri-
teach) and a baseline denoising strategy (w. Self-teach) on
Hammer (ϵ = 40%). (Right): Comparison of clean label
ratio under different noise levels between our method (w.
Tri-teach) and the baseline (w/o. Tri-teach) on Hammer.

but is insufficient to achieve strong performance. These
results underscore the necessity of both robust label selection
through tri-teaching and additional clean supervision from
expert demonstrations to effectively deal with high noise
levels.
Performance with VLM Preference Annotator. Figure 4
compares our method with RL-VLM-F [7] on the Drawer-
Open task, where a VLM is used for preference labeling
instead of a scripted annotator. We observe that even with
an advanced proprietary VLM such as Gemini-1.5-Flash,
the generated preference labels still have a noise rate as
high as 36.4%. Consequently, as shown in the figure, RL-
VLM-F (grey) achieves only a ∼20% success rate due to
the high noise level, although adding one expert demon-
stration improves its success rate to about 40% (blue).1 In
contrast, our method, TREND-VLM-F, achieves the best
performance, reaching a ∼90% average success rate. This
demonstrates TREND’s effectiveness in handling high noise
VLM-generated preference labels.

We also tested on Hammer and Button Press, but the
limitations of the current VLM preference annotator, Gemini-
1.5-Flash, led to high noise rates of up to 50%, causing
both the baseline and our method to struggle. These re-
sults underscore the challenges that current VLMs face,
such as difficulties in adapting to the visual appearance of
simulations, understanding visual and temporal content, and
selecting optimal viewpoints. While future advances in VLM
development may help mitigate these issues, our efforts for
denoising preference labels address a complementary aspect
of improving VLM preference annotation quality.
Is cyclic preference data selection and training really
necessary? In Figure 5 (left), we compare TREND with
a baseline denoising strategy on the Hammer task with
ϵ = 40%. Instead of cyclically selecting data with a small
loss and passing it to another model for training, the baseline
performs self-teaching, where each model uses its own small-
loss samples for training. As shown in the figure, our method
achieves the highest success rate, while the ablated self-
teach approach performs worse than ours but still better than

1Note that the results reported in the original RL-VLM-F paper were
obtained using a deterministic environment based on its released codebase,
whereas we follow standard practice by randomizing the initial robot arm
position and goal location.
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Fig. 6: Hyperparameter analysis on Hammer (ϵ=40%).

PEBBLE, which does not have any denoising mechanism.
This demonstrates that selecting samples based on small loss
can reduce noise to some extent, and that cyclic cross-model
selection can further help denoising the preference labels.
Analysis of label quality with Tri-teach. In Figure 5 (right),
we further analyze the clean preference label ratio achieved
by our tri-teaching denoising method. Here, clean preference
label ratio refers to the proportion of training data that
has correct preference labels. On the Hammer task, using
a scripted preference annotator, we documented the clean
label ratio under varying noise levels (20%, 25%, 30%, 35%,
and 40%) and compared it to the baseline PEBBLE without
any denoising mechanisms. As shown in the figure, with our
tri-teach mechanism, even at a noise ratio as high as 40%,
the clean label ratio reaches ∼80%. This demonstrates that
our method significantly enhances preference label quality,
particularly in high noise conditions.
Impact of hyperparameters. We analyze how the hyper-
parameters of TREND influence the performance of PbRL
under a high noise rate of 40%. In Figure 6, we present the
learning curves for TREND with varying hyperparameters:
(a) selection rate γ ∈ {50%, 55%, 60%, 65%} and (b) BC
loss weight λ ∈ {2.0, 3.0, 3.5, 4.0, 4.5}. We observe that
TREND is generally robust to changes in γ, but performance
can degrade when γ is too high or too low. This is likely due
to selecting more noisy labels or insufficient data. Ideally,
selecting a γ that aligns with the estimated clean label rate
can optimize performance. Regarding the BC loss weight
λ, TREND shows robustness across different values, with
potential performance boosts when appropriately tuned.

VI. CONCLUSION

In this work, we study learning from noisy preference la-
bels in PbRL formulation. We propose TREND, which lever-
ages a tri-teaching strategy and incorporates few-shot expert
demonstrations. Through cyclic peer training among three
reward networks, TREND effectively filters out incorrect
preference labels, improving label quality even under high
noise levels. The integration of a few expert demonstrations
further enhances its performance, providing a strong super-
visory signal and regularization. Our experimental results on
robotic manipulation tasks on Meta-world demonstrate that
TREND consistently outperforms baseline methods, achiev-
ing high success rates even when the noise in the preference
labels reaches up to 40%, highlighting the robustness of our
methods under noisy preference labels.
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